A well grounded education: The role of perception in science and mathematics

Goldstone, R. L., Landy, D., & Son, J. Y. (2008). A well grounded education: The role of perception in science and mathematics. In M. de Vega, A. Glenberg, & A. Graesser (Eds.) Symbols, embodiment, and meaning. Oxford Press (pp . 327-355).

One of the most important applications of grounded cognition theories is to science and mathematics education where the primary goal is to foster knowledge and skills that are widely transportable to new situations. This presents a challenge to those grounded cognition theories that tightly tie knowledge to the specifics of a single situation. In this chapter, we develop a theory learning that is grounded in perception and interaction, yet also supports transferable knowledge. A first series of studies explores the transfer of complex systems principles across two superficially dissimilar scenarios. The results indicate that students most effectively show transfer by applying previously learned perceptual and interpretational processes to new situations. A second series shows that even when students are solving formal algebra problems, they are greatly influenced by non-symbolic, perceptual grouping factors. We interpret both results as showing that high-level cognition that might seem to involve purely symbolic reasoning is actually driven by perceptual processes. The educational implication is that instruction in science and mathematics should involve not only teaching abstract rules and equations but also training students to perceive and interact with their world.

Download PDF version of this paper