We present evidence that successful chunk formation during a statistical learning task depends on how well the perceiver is able to parse the information that is presented between successive presentations of the to-be-learned chunk. First, we show that learners acquire a chunk better when the surrounding information is also chunk-able in a visual statistical learning task. We tested three process models of chunk formation, TRACX, PARSER, and MDLChunker, on our two different experimental conditions, and found that only PARSER and MDLChunker matched the observed result. These two models share the common principle of a memory capacity that is expanded as a result of learning. Though implemented in very different ways, both models effectively remember more individual items (the atomic components of a sequence) as additional chunks are formed. The ability to remember more information directly impacts learning in the models, suggesting that there is a positive-feedback loop in chunk learning.
Memory constraints affect statistical learning; statistical learning affects memory constraints
by
Tags: