Transformational play as a curricular scaffold: Using videogames to support science education

Barab, S., Scott, B., Siyahhan, S. Goldstone, R. L., Ingram-Goble, A., Zuiker, S., & Warren, S. (2009).  Transformational play as a curricular scaffold: Using videogames to support science education Journal of Science Education and Technology, 18, 305-320.

Drawing on game-design principles and an underlying situated theoretical perspective, we developed and researched a 3D game-based curriculum designed to teach water quality concepts. We compared undergraduate student dyads assigned randomly to four different instructional design conditions where the content had increasingly level of contextualization: (a) expository textbook condition, (b) simplistic framing condition, (c) immersive world condition, and a (d) single-user immersive world condition. Results indicated that the 3D-dyad and 3D-single user conditions performed significantly better than the electronic textbook group on standardized items. The immersive-world dyad condition also performed significantly better than either the expository textbook or the descriptive framing condition on a performance-based transfer task, and performed significantly better than the expository textbook condition on standardized test items. Implications for science education, and consistent with the goals of this special issue, are that immersive game-based learning environments provide a powerful new form of curriculum for teaching and learning science.

Download PDF version of this paper

How you named your child: Understanding the relationship between individual decision-making and collective outcomes

Gureckis, T. M., & Goldstone, R. L. (2009). How you named your child: Understanding the relationship between individual decision-making and collective outcomes. Topics in Cognitive Science, 1, 651-674.

We examine the interdependence between individual and group behavior surrounding a somewhat arbitrary, real world decision: selecting a name for
one’s child. Using a historical database of the names given to children over the last century in the United States, we nd that naming choices are influenced by both the frequency of a name in the general population, and by its “momentum” in the recent past in the sense that names which are growing in popularity are preferentially chosen. This bias toward rising names is a recent phenomena: in the early part of the 20th century, increasing popularity of a name from one time period to the next was correlated with a decrease in future popularity. However, more recently this trend has reversed. We evaluate a number of formal models that detail how individual decision-making strategies, played out in a large population of interacting agents, can explain these empirical observations. We argue that cognitive capacities for change detection, the encoding of frequency in memory, and biases towards novel or incongruous stimuli may interact with the behavior of other decision makers to determine the distribution and dynamics of cultural tokens such as names.

Download PDF version of this paper

Analogical transfer from interaction with a simulated physical system

Day, S. B., & Goldstone, R. L. (2009).  Analogical transfer from interaction with a simulated physical system. Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society, 1406-1411. Amsterdam, Netherlands: Cognitive Science Society.

[See also  Day & Goldstone, (2011) Journal of Experimental Psychology: Learning Memory, and Cognition]

In two studies, we find that participants are able to transfer strategies learned while interacting with a simulated physical system to a dissimilar and less perceptually-concrete domain. Interestingly, performance on the transfer task was completely unrelated to explicit knowledge of the structural correspondences between the systems. We suggest that direct interaction with a concrete system may lead to a kind of procedural knowledge that provides a good basis for analogical transfer.

Download PDF version of this paper

Partial position transfer in categorical perception learning

Gerganov, A., Grinberg, M., & Goldstone, R. L. (2009).  Partial position transfer in categorical perception learning Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society, 1828-1833. Amsterdam, Netherlands: Cognitive Science Society.

Two experiments are reported. The first shows incomplete transfer of explicit categorical learning at a distance of 4.5 degrees of visual angle and the second is a control experiment with a non-learning task. The results suggest that some early visual plasticity takes place even in a simple, explicit categorical learning task. We claim that perceptual learning is a much more common phenomenon than believed before and that it plays an important role in everyday tasks including higher-level learning.

Download PDF version of this paper

Collective behavior

Goldstone, R. L. & Gureckis, T. M. (2009).  Collective behavior. Topics in Cognitive Science, 1, 412-438.

The resurgence of interest in collective behavior is in large part due to tools recently made available for conducting laboratory experiments on groups, statistical methods for analyzing large data sets reflecting social interactions, the rapid growth of a diverse variety of online self-organized collectives, and computational modeling methods for understanding both universal and scenario-specific social patterns. We consider case studies of collective behavior along four attributes: the primary motivation of individuals within the group, kinds of interactions among individuals, typical dynamics that result from these interactions, and characteristic outcomes at the group level. With this framework, we compare the collective patterns of noninteracting decision makers, bee swarms, groups forming paths in physical and abstract spaces, sports teams, cooperation and competition for resource usage, and the spread and extension of innovations in an online community. Some critical issues surrounding collective behavior are then reviewed, including the questions of ‘‘Does group behavior always reduce to individual behavior?’’ ‘‘Is ‘group cognition’ possible?’’ and ‘‘What is the value of formal modeling for understanding group behavior?’’

Download PDF version of this paper

Perceptual unitization in part-whole judgments

Hendrickson, A T., & Goldstone, R. L. (2009).  Perceptual unitization in part-whole judgmentsProceedings of the Thirty-First Annual Conference of the Cognitive Science Society, 1084-1089. Amsterdam, Netherlands: Cognitive Science Society.

Categorization relies upon the vocabulary of features that comprise the target objects. Previous theoretical work (Schyns, Goldstone, & Thibaut, 1998) has argued this vocabulary may change through learning and experience. Goldstone (2000) demonstrated this perceptual learning during a categorization task when new features are added that create a single feature unit from multiple existing units. We present two experiments that expand on that work using whole-part judgments (Palmer, 1978) to elicit the feature representation learned through categorization. The implications for different classes of computational models of categorization are discussed.

Download PDF version of this paper

How much of symbolic manipulation is just symbol pushing?

Landy, D. H., & Goldstone, R. L. (2009).  How much of symbolic manipulation is just symbol pushing? Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society, 1072-1077. Amsterdam, Netherlands: Cognitive Science Society.

This paper explores the hypothesis that schematic abstraction—rule following—is partially implemented through processes and knowledge used to understand motion. Two experiments explore the mechanisms used by reasoners solving simple linear equations with one variable. Participants solved problems displayed against a background that moved rightward or leftward. Solving was facilitated when the background motion moved in the direction of the numeric transposition required to solve for the unknown variable. Previous theorizing has usually assumed that such formal problems are solved through the repeated application of abstract transformation patterns (rules) to equations, replicating the steps produced in typical worked solutions. However, the current results suggest that in addition to such strategies, advanced reasoners often employ a mental motion strategy when manipulating algebraic forms: elements of the problem are “picked up” and “moved” across the equation line. This demonstration supports the suggestion that genuinely schematic reasoning could be implemented in perceptual-motor systems through the simulated transformation of referential (but physical) symbol systems.

Download PDF version of this paper

Adaptive group coordination

Roberts, M. E., & Goldstone, R. L. (2009).  Adaptive group coordination, Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society. 2698-2704. Amsterdam, Netherlands: Cognitive Science Society.

Human groups exhibit poor performance in many social situations because task constraints promote either individual maximization behavior or diffusion of responsibility. We introduce a group task that tests human coordination when only a shared group goal exists. Without communication, group members submit numbers in an attempt to collectively sum to a randomly selected number. After receiving group feedback, members adjust their submitted numbers in the next round. Small groups generally outperform large groups, and for all groups, performance improves with task experience, and reactivity to feedback decreases over rounds. Our empirical results and computational modeling provide evidence for adaptive coordination in human groups despite minimal shared history and only indirect communication, and perhaps most interestingly, as the coordination costs increase with group size, large groups adapt through spontaneous role differentiation and self-consistency among members.

Download PDF version of this paper

Sub-optimalities in group foraging and resource competition

Roberts, M. E., & Goldstone, R. L. (2009).  Sub-optimalities in group foraging and resource competition. , Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society 2371-2377. Amsterdam, Netherlands: Cognitive Science Society.

Previous group foraging research has shown that human groups sub-optimally distribute themselves to resources and display undermatching, with a smaller-than-expected proportion of individuals at the more abundant resource pool. In order to further explore these sub-optimalities, we extended a group foraging paradigm to test three variables: the effects of three resource pools, travel cost between pools, and the size of the pools. Although each condition led to undermatching, the conditions showed significant differences in the extent of undermatching, the frequency of switching between resource pools, the wealth inequality among foragers, and the comparative wealth inequality at different resource pools. The results for the three pool conditions suggest that human groups have difficulty in discriminating the relative value of resource pools. The results for the travel cost conditions indicate that human groups distribute themselves to resources more optimally when individuals can easily switch between pools, which is the opposite of the result found with foraging pigeons. Finally, the results for the pool size conditions indicate that larger pool sizes promote greater undermatching, apparently because individuals inefficiently compete over large areas rather than effectively parceling the pools into smaller, distinct regions.

Download PDF version of this paper

Fostering general transfer with specific simulations

Son, J. Y., & Goldstone, R. L. (2009).  Fostering General Transfer with Specific Simulations.Pragmatics and Cognition, 17, 1-42.

Science education faces the difficult task of helping students understand and appropriately generalize scientific principles across a variety of superficially dissimilar specific phenomena. Can cognitive technologies be adapted to benefit both learning specific domains and generalizable transfer? This issue is examined by teaching students complex adaptive systems with computer-based simulations. With a particular emphasis on fostering understanding that transfers to dissimilar phenomena, the studies reported here examine the influence of different descriptions and perceptual instantiations of the scientific principle of competitive specialization. Experiment 1 examines the role of intuitive descriptions to concrete ones, finding that intuitive descriptions leads to enhanced domain-specific learning but also deters transfer. Experiment 2 successfully alleviated these difficulties by combining intuitive descriptions with idealized graphical elements. Experiment 3 demonstrates that idealized graphics are more effective than concrete graphics even when unintuitive descriptions are applied to them. When graphics are concrete, learning and transfer largely depends on the particular description. However, when graphics are idealized, a wider variety of descriptions results in levels of learning and transfer similar to the best combination involving concrete graphics. Although computer-based simulations can be effective for learning that transfers, designing effective simulations requires an understanding of concreteness and idealization in both the graphical interface and its description.

Download PDF version of this paper

Contextualization in perspective

Son, J. Y., & Goldstone, R. L. (2009).  Contextualization in perspective. Cognition and Instruction, 27, 51-89.

Instruction abstracted from specific and concrete examples is frequently criticized for ignoring the context-dependent and perspectival nature of learning (e.g., Bruner, 1962, 1966; Greeno, 1997). Yet, in the effort to create personally interesting learning contexts, cognitive consequences have often been ignored. To examine what kinds of personalized contexts foster or hinder learning and transfer, three manipulations of perspective and context were employed to teach participants Signal Detection Theory (SDT). In all cases, application of SDT principles was negatively impacted by manipulations that encouraged participants to consider the perspective of the signal detector (the decision maker in SDT situations): by giving participants active detection experience (Experiment 1), biasing them to adopt a first-person rather than third-person perspective (Experiment 2), or framing the task in terms of a well-known celebrity (Experiment 3). These contexts run the risk of introducing goals and information that are specific to the detector’s point of view, resulting in sub-optimal understanding of SDT.

Download PDF version of this paper