A Social Interpolation model of group problem-solving

Sloman, S. J., Goldstone, R. L., & Gonzalez, C. (2021). A Social Interpolation model of group problem-solving.  Cognitive Science, 45, 1-30. E13066

How do people use information from others to solve complex problems? Prior work has addressed this question by placing people in social learning situations where the problems they were asked to solve required varying degrees of exploration. This past work uncovered important interactions between groups’ connectivity and the problem’s complexity: the advantage of less connected networks over more connected networks increased as exploration was increasingly required for optimally solving the problem at hand. We propose the Social Interpolation Model (SIM), an agent-based model to explore the cognitive mechanisms that can underlie exploratory behavior in groups. Through results from simulation experiments, we conclude that “exploration” may not be a single cognitive property, but rather the emergent result of three distinct behavioral and cognitive mechanisms, namely, (a) breadth of generalization, (b) quality of prior expectation, and (c) relative valuation of self-obtained information. We formalize these mechanisms in the SIM, and explore their effects on group dynamics and success at solving different kinds of problems. Our main finding is that broad generalization and high quality of prior expectation facilitate successful search in environments where exploration is important, and hinder successful search in environments where exploitation alone is sufficient.

Download PDF of paper here

Self-organized division of cognitive labor

Andrade-Lotero, E., & Goldstone, R. L. (2021).  Self-organized division of cognitive labor.  PLoS ONE, 16(7): e0254532. 

Often members of a group benefit from dividing the group’s task into separate components, where each member specializes their role so as to accomplish only one of the components. While this division of labor phenomenon has been observed with respect to both manual and cognitive labor, there is no clear understanding of the cognitive mechanisms allowing for its emergence, especially when there are multiple divisions possible and communication is limited. Indeed, maximization of expected utility often does not differentiate between alternative ways in which individuals could divide labor. We developed an iterative two-person game in which there are multiple ways of dividing labor, but in which it is not possible to explicitly negotiate a division. We implemented the game both as a human experimental task and as a computational model. Our results show that the majority of human dyads can finish the game with an efficient division of labor. Moreover, we fitted our computational model to the behavioral data, which allowed us to explain how the perceived similarity between a player’s actions and the task’s focal points guided the players’ choices from one round to the other, thus bridging the group dynamics and its underlying cognitive process. Potential applications of this model outside cognitive science include the improvement of cooperation in human groups, multi-agent systems, as well as human-robot collaboration.

Download PDF of paper

Reconstructing Maps from Text

Avery, J. E., Goldstone, R. L, & Jones, M. N. (2021). Reconstructing Maps from Text. Cognitive Systems Research. doi: https://doi.org/10.1016/j.cogsys.2021.07.007

Previous research has demonstrated that Distributional Semantic Models (DSMs) are capable of reconstructing maps from news corpora (Louwerse & Zwaan, 2009) and novels (Louwerse & Benesh, 2012). The capacity for reproducing maps is surprising since DSMs notoriously lack perceptual grounding . In this paper we investigate the statistical sources required in language to infer maps, and the resulting constraints placed on mechanisms of semantic representation. Study 1 brings word co-occurrence under experimental control to demonstrate that standard DSMs cannot reproduce maps when word co-occurrence is uniform. Specifically, standard DSMs require that direct co-occurrences between city names in a corpus mirror the proximity between the city locations in the map in order to successfully reconstruct the spatial map. Study 2 presents an instance-based DSM that is capable of reconstructing maps independent of the frequency of co-occurrence of city names.

Download PDF of paper

The Influences of Category Learning on Perceptual Reconstructions

Dubova, M., & Goldstone, R. L. (2021). The Influences of Category Learning on Perceptual Reconstructions.  Cognitive Science, 45, e12981, 1-24.

We explore different ways in which the human visual system can adapt for perceiving and categorizing the environment. There are various accounts of supervised (categorical) and unsupervised perceptual learning, and different perspectives on the functional relationship between perception and categorization. We suggest that common experimental designs are insufficient to differentiate between hypothesized perceptual learning mechanisms and reveal their possible interplay. We propose a relatively underutilized way of studying potential categorical effects on perception, and we test the predictions of different perceptual learning models using a two-dimensional, interleaved categorizationplus- reconstruction task. We find evidence that the human visual system adapts its encodings to the feature structure of the environment, uses categorical expectations for robust reconstruction, allocates encoding resources with respect to categorization utility, and adapts to prevent miscategorizations.

Download PDF of paper

ManyClasses 1: Assessing the generalizable effect of immediate versus delayed feedback across many college classes

Fyfe, E., de Leeuw, J. R., Carvalho, P. F., Goldstone, R., Sherman, J., 
 Motz, B. (2021). ManyClasses 1: Assessing the generalizable effect of immediate versus delayed feedback across many college classes. Advances in Methods and Practices in Psychological Science, 4, 1-24. https://doi.org/10.31234/osf.io/4mvyh

Psychology researchers have long attempted to identify educational practices that improve student learning. However, experimental research on these practices is often conducted in laboratory contexts or in a single course, which threatens the external validity of the results. In this article, we establish an experimental paradigm for evaluating the benefits of recommended practices across a variety of authentic educational contexts—a model we call ManyClasses. The core feature is that researchers examine the same research question and measure the same experimental effect across many classes spanning a range of topics, institutions, teacher implementations, and student populations. We report the first ManyClasses study, in which we examined how the timing of feedback on class assignments, either immediate or delayed by a few days, affected subsequent performance on class assessments. Across 38 classes, the overall estimate for the effect of feedback timing was 0.002 (95% highest density interval = [−0.05, 0.05]), which indicates that there was no effect of immediate feedback compared with delayed feedback on student learning that generalizes across classes. Furthermore, there were no credibly nonzero effects for 40 preregistered moderators related to class-level and student-level characteristics. Yet our results provide hints that in certain kinds of classes, which were undersampled in the current study, there may be modest advantages for delayed feedback. More broadly, these findings provide insights regarding the feasibility of conducting within-class randomized experiments across a range of naturally occurring learning environments.

Download PDF of paper

Categories affect color perception of only some simultaneously present objects

Dubova, M., & Goldstone, R. L. (2021). Categories affect color perception of only some simultaneously present objects. Proceedings of the 43rd Annual Conference of the Cognitive Science Society. (pp. 2041-2048). Vienna, Austria. Cognitive Science Society.

There is broad empirical evidence suggesting that higher-level cognitive processes, such as language, categorization, and emotion, shape human visual perception. For example, categories that we acquire throughout lifetime have been found to alter our perceptual discriminations and distort perceptual processing. However, many of these studies have been criticized as unable to differentiate between immediate perceptual experience and the arguably concomitant processes, such as memory, judgment, and some kinds of attention. Here, we study categorical effects on perception by adapting the perceptual matching task to minimize the potential non-perceptual influences on the results. We found that the learned category-color associations bias human color matching judgments away from their category ideal on a color continuum. This effect, however, unequally biased two objects (probe and manipulator) that were simultaneously present on the screen, thus demonstrating a more nuanced picture of top-down influences on perception than has been assumed both by the theories of categorical perception and the El Greco methodological fallacy. We suggest that only the concurrent memory for visually present objects is subject to a contrast-from-caricature distortion due to category-association learning.

Download PDF of paper

The most efficient sequence of study depends on the type of test

Carvalho, P. F., & Goldstone, R. L. (2021). The most efficient sequence of study depends on the type of test.  Applied Cognitive Psychology, 35, 82-97.

Across three experiments featuring naturalistic concepts (psychology concepts) and naĂŻve learners, we extend previous research showing an effect of the sequence of study on learning outcomes, by demonstrating that the sequence of examples during study changes the representation the learner creates of the study materials. We compared participants’ performance in test tasks requiring different representations and evaluated which sequence yields better learning in which type of tests. We found that interleaved study, in which examples from different concepts are mixed, leads to the creation of relatively interrelated concepts that are represented by contrast to each other and based on discriminating properties. Conversely, blocked study, in which several examples of the same concept are presented together, leads to the creation of relatively isolated concepts that are represented in terms of their central and characteristic properties. These results argue for the integrated investigation of the benefits of different sequences of study as depending on the characteristics of the study and testing situation.

Download PDF of paper

Videos for Lara-Dammer, Hofstadter, & Goldstone (in prep.)

Pass-through event in foreground
no background context

Collision event in foreground
no background context

Collision event in foreground
pass-through events in background

Collision event in foreground
collision events in background

Pass-through event in foreground
pass-through events in background

Pass-through event in foreground
collision events in background