The well measured life: Performance, well-being, motivation, and identity in an age of abundant data

Goldstone, R. L. (2022). The well measured life: Performance, well-being, motivation, and identity in an age of abundant data.  Current Directions in Psychological Science, 31(1), 1-9.

Our lives are being measured in rapidly increasing ways and frequency. These measurements have beneficial and deleterious effects at both individual and social levels. Behavioral measurement technologies offer the promise of helping us to know ourselves better and to improve our well-being by using personalized feedback and gamification. At the same time, they present threats to our privacy, self-esteem, and motivation. At the societal level, the potential benefits of reducing bias and decision variability by using objective and transparent assessments are offset by threats of systematic, algorithmic bias from invalid or flawed measurements. Considerable technological progress, careful foresight, and continuous scrutiny will be needed so that the positive impacts of behavioral measurement technologies far outweigh the negative ones.

Download PDF of article here

Categorical perception meets El Greco: categories unequally influence color perception of simultaneously present objects

Dubova, M., & Goldstone, R. L. (2022).  Categorical perception meets El Greco: categories unequally influence color perception of simultaneously present objects. Cognition, 223, 1-14. 105025.

Broad empirical evidence suggests that higher-level cognitive processes, such as language, categorization, and emotion, shape human visual perception. Do these higher-level processes shape human perception of all the relevant items within an immediately available scene, or do they affect only some of them? Here, we study categorical effects on visual perception by adapting a perceptual matching task so as to minimize potential non- perceptual influences. In three experiments with human adults (= 80; N = 80, = 82), we found that the learned higher-level categories systematically bias human perceptual matchings away from a caricature of their typical color. This effect, however, unequally biased different objects that were simultaneously present within the scene, thus demonstrating a more nuanced picture of top-down influences on perception than has been commonly assumed. In particular, perception of only the object to be matched, not the matching object, was influenced by animal category and it was gazed at less often by participants. These results suggest that category- based associations change perceptual encodings of the items at the periphery of our visual field or the items stored in concurrent memory when a person moves their eyes from one object to another. The main finding of this study calls for a revision of theories of top-down effects on perception and falsify the core assumption behind the El Greco fallacy criticism of them.

Download PDF of paper here

Tonal Emergence: An agent-based model of tonal coordination

Setzler, M., & Goldstone, R. L. (2022). Tonal Emergence: An Agent-Based Model of Tonal Coordination. Cognition, 221, 1-19. 104968.

 Humans have a remarkable capacity for coordination. Our ability to interact and act jointly in groups is crucial to our success as a species. Joint Action (JA) research has often concerned itself with simplistic behaviors in highly constrained laboratory tasks. But there has been a growing interest in understanding complex coordination in more open-ended contexts. In this regard, collective music improvisation has emerged as a fascinating model domain for studying basic JA mechanisms in an unconstrained and highly sophisticated setting. A number of empirical studies have begun to elucidate coordination mechanisms underlying joint musical improvisation, but these findings have yet to be cached out in a working computational model. The present work fills this gap by presenting Tonal Emergence, an idealized agent-based model of improvised musical coordination. Tonal Emergence models the coordination of notes played by improvisers to generate harmony (i.e., tonality), by simulating agents that stochastically generate notes biased towards maximizing harmonic consonance given their partner’s previous notes. The model replicates an interesting empirical result from a previous study of professional jazz pianists: feedback loops of mutual adaptation between interacting agents support the production of consonant harmony. The model is further explored to show how complex tonal dynamics, such as the production and dissolution of stable tonal centers, are supported by agents that are characterized by (i) a tendency to strive toward consonance, (ii) stochasticity, and (iii) a limited memory for previously played notes. Tonal Emergence thus provides a grounded computational model to simulate and probe the coordination mechanisms underpinning one of the more remarkable feats of human cognition: collective music improvisation. 

Download PDF of paper here