Becoming cognitive science

Goldstone, R. L. (2019).  Becoming cognitive science.  Topics in Cognitive Science, 1-12.

Cognitive science continues to make a compelling case for having a coherent, unique, and fundamental subject of inquiry: What is the nature of minds, where do they come from, and how do they work? Central to this inquiry is the notion of agents that have goals, one of which is their own persistence, who use dynamically constructed knowledge to act in the world to achieve those goals. An agentive perspective explains why a special class of systems have a cluster of co-occurring capacities that enable them to exhibit adaptive behavior in a complex environment: perception, attention, memory, representation, planning, and communication. As an intellectual endeavor, cognitive science may not have achieved a hard core of uncontested assumptions that Lakatos (1978) identifies as emblematic of a successful research program, but there are alternative conceptions according to which cognitive science has been successful. First, challenges of the early, core tenet of “Mind as Computation” have helped put cognitive science on a stronger foundation—one that incorporates relations between minds and their environments. Second, even if a full cross-disciplinary theoretic consensus is elusive, cognitive science can inspire distant, deep, and transformative connections between pairs of fields. To be intellectually vital, cognitive science need not resemble a traditional discipline with its associated insularity and unchallenged assumptions. Instead, there is strength and resilience in the diverse perspectives and methods that cognitive science assembles together. This interdisciplinary enterprise is fragile and perhaps inherently unstable, as the looming absorption of cognitive science into psychology shows. Still, for many researchers, the excitement and benefits of triangulating on the nature of minds by integrating diverse cases cannot be secured by a stable discipline with an uncontested core of assumptions.

Download PDF of article

Beyond the lab: Using big data to discover principles of cognition

Lupyan, G., & Goldstone, R. L. (2019). Introduction to special issue. Beyond the lab: Using big data to discover principles of cognition.  Behavior Research Methods, 51, 1473-1476.

Like many other scientific disciplines, psychological science has felt the impact of the big-data revolution. This impact arises from the meeting of three forces: data availability, data heterogeneity, and data analyzability. In terms of data availability, consider that for decades, researchers relied on the Brown Corpus of about one million words (Kučera & Francis, 1969). Modern resources, in contrast, are larger by six orders of magnitude (e.g., Google’s 1T corpus) and are available in a growing number of languages. About 240 billion photos have been uploaded to Facebook,1  and Instagram receives over 100 million new photos each day.2  The largescale digitization of these data has made it possible in principle to analyze and aggregate these resources on a previously unimagined scale. Heterogeneity  refers to the availability of different types  of data. For example, recent progress in automatic image recognition is owed not just to improvements in algorithms and hardware, but arguably more to the ability to merge large collections of images with linguistic labels (produced by crowdsourced human taggers) that serve as training data to the algorithms. Making use of heterogeneous data sources often depends on their standardization. For example, the ability to combine demographic and grammatical data about thousands of languages led to the finding that languages spoken by more people have simpler morphologies (Lupyan & Dale, 2010 ). The ability to combine these data types would have been substantially more difficult without the existence of standardized language and country codes that could be used to merge the different data sources. Finally, analyzability  must be ensured, for without appropriate tools to process and analyze different types of data, the “ data”  are merely bytes.

Download PDF of this paper

See all of the papers appearing in the Big Data Special Issue of Behavior Research Methods

The Evolutionary Dynamics of Cooperation in Collective Search

Tump, A. N., Wu, C. M., Bouhlel, I., & Goldstone, R. L. (2019).The Evolutionary Dynamics of Cooperation in Collective Search.  Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pp. 883-889). Montreal, Canada: Cognitive Science Society.

How does cooperation arise in an evolutionary context? We approach this problem using a collective search paradigm where interactions are dynamic and there is competition for rewards. Using evolutionary simulations, we find that the unconditional sharing of information can be an evolutionary advantageous strategy without the need for conditional strategies or explicit reciprocation. Shared information acts as a recruitment signal and facilitates the formation of a self-organized group. Thus, the improved search efficiency of the collective bestows byproduct benefits onto the original sharer. A key mechanism is a visibility radius, where individuals have unconditional access to information about neighbors within a limited distance. Our results show that for a variety of initial conditions—including populations initially devoid of prosocial individuals—and across both static and dynamic fitness landscapes, we find strong selection pressure to evolve unconditional sharing.

Download PDF of paper

Complex exploration dynamics from simple heuristics in a collective learning environment

Sloman, S. J., Goldstone, R. L., & Gonzalez, C. (2019). Complex exploration dynamics from simple heuristics in a collective learning environment.  Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pp. 2818-2824). Montreal, Canada: Cognitive Science Society.

Effective problem solving requires both exploration and exploitation. We analyze data from a group problem-solving task to gain insight into how people use information from past experiences and from others to achieve explore-exploit trade-offs in complex environments. The behavior we observe is consistent with the use of simple, reinforcement-based heuristics. Participants increase exploration immediately after experiencing a low payoff, and decrease exploration immediately after experiencing a high or improved payoff. We suggest that whether an outcome is perceived as “high” or “low” is a dynamic function of the outcome information available to participants. The degree to which the distribution of observed information reflects the true range of possible outcomes plays an important role in determining whether or not this heuristic is adaptive in a given environment.

Download PDF of paper

Science map metaphors: a comparison of network versus hexmap-based visualizations

Börner, K. Simpson, A. H., Bueckle, A., & Goldstone, R. L. (2018).  Science map metaphors: a comparison of network versus hexmap-based visualizations.  Scientometrics, 114, 409-426.

Most maps of science use a network layout; few use a landscape metaphor. Human users are trained in reading geospatial maps, yet most have a hard time reading even simple networks. Prior work using general networks has shown that map-based visualizations increase recall accuracy of data. This paper reports the result of a comparison of two comparable renderings of the UCSD map of science that are: the original network layout and a novel hexmap that uses a landscape metaphor to layout the 554 subdisciplines grouped into 13 color-coded disciplines of science. Overlaid are HITS metrics that show the impact and transformativeness of different scientific subdisciplines. Both maps support the same interactivity, including search, filter, zoom, panning, and details on demand. Users performed memorization, search, and retrieval tasks using both maps. Results did not show any significant differences in how the two maps were remembered or used by participants. We conclude with a discussion of results and planned future work.

Download PDF of paper here