Exposing learners to variability during training has been demonstrated to improve performance

Gorman,T. E., & Goldstone, R. L. (2022).  An instance-based model account of the benefits of varied practice in visuomotor skill.  Cognitive Psychology, 137. E101491.

Exposing learners to variability during training has been demonstrated to improve performance in subsequent transfer testing. Such variability benefits are often accounted for by assuming that learners are developing some general task schema or structure. However much of this research has neglected to account for differences in similarity between varied and constant training conditions. In a between-groups manipulation, we trained participants on a simple projectile launching task, with either varied or constant conditions. We replicate previous findings showing a transfer advantage of varied over constant training. Furthermore, we show that a standard similarity model is insufficient to account for the benefits of variation, but, if the model is adjusted to assume that varied learners are tuned towards a broader generalization gradient, then a similarity-based model is sufficient to explain the observed benefits of variation. Our results therefore suggest that some variability benefits can be accommodated within instance-based models without positing the learning of some schemata or structure.

Download PDF of paper

The well measured life: Performance, well-being, motivation, and identity in an age of abundant data

Goldstone, R. L. (2022). The well measured life: Performance, well-being, motivation, and identity in an age of abundant data.  Current Directions in Psychological Science, 31(1), 1-9. https://doi.org/10.1177/09637214211053834

Our lives are being measured in rapidly increasing ways and frequency. These measurements have beneficial and deleterious effects at both individual and social levels. Behavioral measurement technologies offer the promise of helping us to know ourselves better and to improve our well-being by using personalized feedback and gamification. At the same time, they present threats to our privacy, self-esteem, and motivation. At the societal level, the potential benefits of reducing bias and decision variability by using objective and transparent assessments are offset by threats of systematic, algorithmic bias from invalid or flawed measurements. Considerable technological progress, careful foresight, and continuous scrutiny will be needed so that the positive impacts of behavioral measurement technologies far outweigh the negative ones.

Download PDF of article here

Tonal Emergence: An agent-based model of tonal coordination

Setzler, M., & Goldstone, R. L. (2022). Tonal Emergence: An Agent-Based Model of Tonal Coordination. Cognition, 221, 1-19. 104968.

 Humans have a remarkable capacity for coordination. Our ability to interact and act jointly in groups is crucial to our success as a species. Joint Action (JA) research has often concerned itself with simplistic behaviors in highly constrained laboratory tasks. But there has been a growing interest in understanding complex coordination in more open-ended contexts. In this regard, collective music improvisation has emerged as a fascinating model domain for studying basic JA mechanisms in an unconstrained and highly sophisticated setting. A number of empirical studies have begun to elucidate coordination mechanisms underlying joint musical improvisation, but these findings have yet to be cached out in a working computational model. The present work fills this gap by presenting Tonal Emergence, an idealized agent-based model of improvised musical coordination. Tonal Emergence models the coordination of notes played by improvisers to generate harmony (i.e., tonality), by simulating agents that stochastically generate notes biased towards maximizing harmonic consonance given their partner’s previous notes. The model replicates an interesting empirical result from a previous study of professional jazz pianists: feedback loops of mutual adaptation between interacting agents support the production of consonant harmony. The model is further explored to show how complex tonal dynamics, such as the production and dissolution of stable tonal centers, are supported by agents that are characterized by (i) a tendency to strive toward consonance, (ii) stochasticity, and (iii) a limited memory for previously played notes. Tonal Emergence thus provides a grounded computational model to simulate and probe the coordination mechanisms underpinning one of the more remarkable feats of human cognition: collective music improvisation. 

Download PDF of paper here

Self-organized division of cognitive labor

Andrade-Lotero, E., & Goldstone, R. L. (2021).  Self-organized division of cognitive labor.  PLoS ONE, 16(7): e0254532. 

Often members of a group benefit from dividing the group’s task into separate components, where each member specializes their role so as to accomplish only one of the components. While this division of labor phenomenon has been observed with respect to both manual and cognitive labor, there is no clear understanding of the cognitive mechanisms allowing for its emergence, especially when there are multiple divisions possible and communication is limited. Indeed, maximization of expected utility often does not differentiate between alternative ways in which individuals could divide labor. We developed an iterative two-person game in which there are multiple ways of dividing labor, but in which it is not possible to explicitly negotiate a division. We implemented the game both as a human experimental task and as a computational model. Our results show that the majority of human dyads can finish the game with an efficient division of labor. Moreover, we fitted our computational model to the behavioral data, which allowed us to explain how the perceived similarity between a player’s actions and the task’s focal points guided the players’ choices from one round to the other, thus bridging the group dynamics and its underlying cognitive process. Potential applications of this model outside cognitive science include the improvement of cooperation in human groups, multi-agent systems, as well as human-robot collaboration.

Download PDF of paper

A three-site reproduction of the Joint Simon Effect with the NAO robot

Strait, M., Lier, F., Bernotat, J., Wachsmuth, S., Eyssel, F., Goldstone, R. L., & Sabanovic, S. (2020).  A three-site reproduction of the Joint Simon Effect with the NAO robot.  15th Annual International Conference on Human Robot Interaction.  Cambridge, England.  Association for Computing Machinery (ACM) & Institute of Electrical and Electronics Engineers (IEEE).  (pp. 103-111).  New York: ACM.

The generalizability of empirical research depends on the reproduction of findings across settings and populations. Consequently, generalizations demand resources beyond that which is typically available to any one laboratory. With collective interest in the joint Simon effect (JSE) – a phenomenon that suggests people work more effectively with humanlike (as opposed to mechanomorphic) robots – we pursued a multi-institutional research cooperation between robotics researchers, social scientists, and software engineers. To evaluate the robustness of the JSE in dyadic human-robot interactions, we constructed an experimental infrastructure for exact, lab-independent reproduction of robot behavior. Deployment of our infrastructure across three institutions with distinct research orientations (well-resourced versus resource-constrained) provides initial demonstration of the success of our approach and the degree to which it can alleviate technical barriers to HRI reproducibility. Moreover, with the three deployments situated in culturally distinct contexts (Germany, the U.S. Midwest, and the Mexico-U.S. Border), observation of a JSE at each site provides evidence its generalizability across settings and populations.

Download PDF of paper

Coordination and consonance between interacting, improvising musicians

Setzler, M., & Goldstone, R. L. (2020).  Coordination and consonance between interacting, improvising musicians.  Open Mind: Discoveries in Cognitive Science, 4, 88—101. https://doi.org/10.1162/opmi_a_00036.

Joint action (JA) is ubiquitous in our cognitive lives. From basketball teams to teams of surgeons, humans often coordinate with one another to achieve some common goal. Idealized laboratory studies of group behavior have begun to elucidate basic JA mechanisms, but little is understood about how these mechanisms scale up in more sophisticated and open-ended JA that occurs in the wild. We address this gap by examining coordination in a paragon domain for creative joint expression: improvising jazz musicians. Coordination in jazz music subserves an aesthetic goal: the generation of a collective musical expression comprising coherent, highly nuanced musical structure (e.g. rhythm, harmony). In our study, dyads of professional jazz pianists improvised in a “coupled”, mutually adaptive condition, and an “overdubbed” condition which precluded mutual adaptation, as occurs in common studio recording practices. Using a model of musical tonality, we quantify the flow of rhythmic and harmonic information between musicians as a function of interaction condition. Our analyses show that mutually adapting dyads achieve greater temporal alignment and produce more consonant harmonies. These musical signatures of coordination were preferred by independent improvisers and naive listeners, who gave higher quality ratings to coupled interactions despite being blind to condition. We present these results and discuss their implications for music technology and JA research more generally.

Download PDF