We explore different ways in which the human visual system can adapt for perceiving and categorizing the environment. There are various accounts of supervised (categorical) and unsupervised perceptual learning, and different perspectives on the functional relationship between perception and categorization. We suggest that common experimental designs are insufficient to differentiate between hypothesized perceptual learning mechanisms and reveal their possible interplay. We propose a relatively underutilized way of studying potential categorical effects on perception, and we test the predictions of different perceptual learning models using a two-dimensional, interleaved categorizationplus- reconstruction task. We find evidence that the human visual system adapts its encodings to the feature structure of the environment, uses categorical expectations for robust reconstruction, allocates encoding resources with respect to categorization utility, and adapts to prevent miscategorizations.
The Influences of Category Learning on Perceptual Reconstructions
by
Tags: