Science education faces the difficult task of helping students understand and appropriately generalize scientific principles across a variety of superficially dissimilar specific phenomena. Can cognitive technologies be adapted to benefit both learning specific domains and generalizable transfer? This issue is examined by teaching students complex adaptive systems with computer-based simulations. With a particular emphasis on fostering understanding that transfers to dissimilar phenomena, the studies reported here examine the influence of different descriptions and perceptual instantiations of the scientific principle of competitive specialization. Experiment 1 examines the role of intuitive descriptions to concrete ones, finding that intuitive descriptions leads to enhanced domain-specific learning but also deters transfer. Experiment 2 successfully alleviated these difficulties by combining intuitive descriptions with idealized graphical elements. Experiment 3 demonstrates that idealized graphics are more effective than concrete graphics even when unintuitive descriptions are applied to them. When graphics are concrete, learning and transfer largely depends on the particular description. However, when graphics are idealized, a wider variety of descriptions results in levels of learning and transfer similar to the best combination involving concrete graphics. Although computer-based simulations can be effective for learning that transfers, designing effective simulations requires an understanding of concreteness and idealization in both the graphical interface and its description.